冈本app下载新版本
课程名称: 教师:
当前位置:
 >> 
 >> 
An inexact proximal augmented Lagrangian framework with arbitrary linearly convergent inner solver for composite convex optimization
An inexact proximal augmented Lagrangian framework with arbitrary linearly convergent inner solver for composite convex optimization
教师介绍

本讲教师:瞿铮
所属学科:理科
人  气:60

课程介绍
摘要:We propose an inexact proximal augmented Lagrangian framework with explicit inner problem termination rule for composite convex optimization problems. We consider arbitrary linearly convergent inner solver including in particular stochastic algorithms, making the resulting framework more scalable facing the ever-increasing problem dimension. Each subproblem is solved inexactly with an explicit and self-adaptive stopping criterion, without requiring to set an a priori target accuracy. When the primal and dual domain are bounded, our method achieves the best known complexity bounds in terms of number of inner solver iterations, respectively for the strongly convex and non-strongly convex case. Without the boundedness assumption, only logarithm terms need to be added. Within the general framework that we propose, we also obtain the first iteration complexity bounds under relative smoothness assumption on the differentiable component of the objective function. We show through theoretical analysis as well as numerical experiments the computational speedup achieved by the use of randomized inner solvers for large-scale problems.

薰衣草直播app破解版污

针对该课程没有任何评论,谈谈您对该课程的看法吧?
  • 用户名: 密 码:
致谢:本课件的制作和发布均为公益目的,免费提供给公众学习和研究。对于本课件制作传播过程中可能涉及的作品或作品部分内容的著作权人以及相关权利人谨致谢意!
课件总访问人次:21910742
中国科学技术大学研究生网络课堂试运行版,版权属于中国科学技术大学研究生院。
本网站所有内容属于中国科学技术大学,未经允许不得下载传播。
地址:安徽省合肥市金寨路96号;邮编:230026。TEL:+86-551-63602929;E-mail:wlkt@ustc.edu.cn。

扫一扫,手机版